Take $g=9.8 \mathrm{~ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

1. A car of mass 1200 kg decelerates from $30 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ in 6 seconds at a constant rate.
(i) Find the magnitude, in N , of the decelerating force.
(ii) Find the loss, in J, in the car's kinetic energy.
2. Eddie, whose mass is 71 kg , rides a bicycle of mass 25 kg up a hill inclined at an angle α to the horizontal, where $\sin \alpha=\frac{1}{12}$. When Eddie is working at a rate of 600 W , he is moving at a constant speed of $6 \mathrm{~ms}^{-1}$.
Find the magnitude of the non-gravitational resistance to his motion.
3. A bird of mass 0.5 kg , flying around a vertical feeding post at a constant speed of $4 \mathrm{~ms}^{-1}$, inclines its wings so as to move in a horizontal circle of radius 2 m . The lifting force L newtons acts perpendicular to the bird's wings, as shown.
Modelling the bird as a particle, find, to the nearest degree, the
 angle θ that its wings make with the vertical.
4.

The diagram shows a body which may be modelled as a uniform lamina.
The body is suspended from the point marked A and rests in equilibrium.
(i) Calculate, to the nearest degree, the angle which the edge $A B$ then makes with the vertical.

Frank suggests that the angle between $A B$ and the vertical would be smaller if the lamina were made from lighter material.
(ii) State, with a brief explanation, whether Frank is correct.
5. A uniform $\operatorname{rod} A B$, of mass 0.8 kg and length $10 a$, is supported at the end A by a light inextensible vertical string and rests in limiting equilibrium on a rough fixed peg at C, where $A C=7 a$.

$$
A
$$

(i) Draw a diagram to show all the forces acting on the rod.

(ii) Find the magnitude of the tension in the string.

Given further that $A B$ makes an angle of 20° with the horizontal,
(iii) find the magnitude of the normal reaction exerted by the peg on the rod at C.
6. Two particles A and B, of mass m and $k m$ respectively, are moving in the same direction on a smooth horizontal surface. A has speed $4 u$ and B has speed u. The coefficient of restitution between A and B is $e . A$ collides directly with B, and in the collision the direction of A 's motion is reversed. Immediately after the impact, B has speed $2 u$.
(i) Show that the speed of A immediately after the impact is $u(3 e-2)$.
(ii) Deduce the range of possible values of e.
(iii) Show that $4<k \leq 5$.
7. A ball is projected from ground level with speed $34 \mathrm{~ms}^{-1}$ at an angle α above the horizontal, where $\tan \alpha=8 / 15$.
(i) Find the greatest height reached by the ball above ground level.

While it is descending, the ball hits a horizontal ledge 6 metres above ground level.
(ii) Find the horizontal distance travelled by the ball before it hits the ledge.
(iii) Find the speed of the ball at the instant when it hits the ledge.

MECHANICS 2 (C) TEST PAPER 1 : ANSWERS AND MARK SCHEME

1. (i) Deceleration $=5 / 3 \mathrm{~ms}^{-2} \quad$ Force $=1200 \times \frac{5}{3}=2000 \mathrm{~N}$
(ii) K.E. lost $=600\left(30^{2}-20^{2}\right)=300000 \mathrm{~J}$
2. $P=F v: 600=6 F \quad F=100 \mathrm{~N}$
$100=96 g \sin \alpha+R \quad R=100-8 g=21.6 \mathrm{~N}$
3. $L \sin \theta=0.5 g=4.9 \quad L \cos \theta=m v^{2} / r=0.5 \times 16 \div 2=4$ $\tan \theta=4.9 \div 4=1.225$

$$
\begin{gathered}
L \cos \theta=m v^{2} / r=0.5 \times 16 \div 2=4 \\
\theta=50 \cdot 8^{0} 51^{0}
\end{gathered}
$$

M1 A1
M1 A14
M1 A1 A1
M1 A1 A1 6
4. (i) $600(25,6)+600(30,27)=1200(\overline{\mathrm{x}}, \overline{\mathrm{y}}) \quad \overline{\mathrm{x}}=27 \cdot 5, \overline{\mathrm{y}}=16 \cdot 5 \quad$ M1 A1 M1 A1 A1

$$
\tan \theta=16 \cdot 5 \div 27.5=0.6 \quad \theta=31^{\circ} \quad \text { M1 A1 }
$$

(ii) No : centre of mass depends only on area, not on density

B1 B1 9
5. (i) Diagram showing weight, tension, normal reaction, friction $\quad \mathrm{B} 2$
(ii) $\mathrm{M}(C): T(7 a \cos \alpha)=0 \cdot 8 g(2 a \cos \alpha) \quad T=2(0 \cdot 8 \mathrm{~g}) \div 7=2.24 \mathrm{~N}$ M1 A1 A1
(iii) Resolve perp. to rod : $R+T \cos \alpha=0.8 g \cos \alpha$

M1 A1
$R=5.6 \cos 20^{\circ}=5.26 \mathrm{~N}$
M1 A1 9
6. (i) $\left(v_{B}-v_{A}\right) /(u-4 u)=-e \quad 2 u-v_{A}=3 e u \quad v_{A}=u(2-3 e) \quad$ M1 A1
$v_{A}<0$, so speed $=u(3 e-2) \quad \mathrm{A} 1$
(ii) Since $v_{A}<0,2-3 e<0 \quad \frac{2}{3}<e \leq 1$
(iii) $\begin{array}{rlr}4 m u+k m u=m v A+k m v_{B} & v_{A}+2 k u=4 u+k u \\ v_{A}=u(4-k), \text { so } 4-k=2-3 e & k=3 e+2\end{array}$
(iii) $\begin{array}{rlr}4 m u+k m u=m v A+k m v_{B} & v_{A}+2 k u=4 u+k u \\ v_{A}=u(4-k) \text {, so } 4-k=2-3 e & k=3 e+2\end{array}$ $\frac{2}{3}<e \leq 1, \quad$ so $4<k \leq 5$

M1 A1 A1
M1 A1
M1 A1
M1 A1 12
7. (i) $y=(u \sin \alpha) t-\frac{1}{2} g t^{2}=16 t-4 \cdot 9 t^{2}$

M1 A1
When y is max., $16-9.8 t=0 \quad t=1.63 \quad y=13 \cdot 1 \mathrm{~m} \quad$ M1 A1 A1
(ii) When $y=6, \quad 4 \cdot 9 t^{2}-16 t+6=0$

B1
$t=(16+\sqrt{ } 138 \cdot 4) / 9 \cdot 8=2 \cdot 83 \quad x=(u \cos \alpha) t=30 t=85 \cdot 0 \mathrm{~m}$
M1 A1 M1 A1
(iii) $m\left(34^{2}\right)=m g(6)+\frac{1}{2} m v^{2} \quad v^{2}=1038 \quad v=32 \cdot 2 \mathrm{~ms}^{-1}$

M1 A1 A1 13

