[2]

MECHANICS (C) UNIT 2 TEST PAPER 1

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary.

- 1. A car of mass 1200 kg decelerates from 30 ms⁻¹ to 20 ms⁻¹ in 6 seconds at a constant rate.
 - (i) Find the magnitude, in N, of the decelerating force.
 - (ii) Find the loss, in J, in the car's kinetic energy. [2]
- Eddie, whose mass is 71 kg, rides a bicycle of mass 25 kg up a hill inclined at an angle α to the horizontal, where $\sin \alpha = \frac{1}{12}$. When Eddie is working at a rate of 600 W, he is moving at a constant speed of 6 ms⁻¹.

Find the magnitude of the non-gravitational resistance to his motion. [6]

A bird of mass 0.5 kg, flying around a vertical feeding post at a constant speed of 4 ms⁻¹, inclines its wings so as to move in a horizontal circle of radius 2 m. The lifting force L newtons acts perpendicular to the bird's wings, as shown. Modelling the bird as a particle, find, to the nearest degree, the angle θ that its wings make with the vertical.

[7]

4. 12 cm 20cm 30cm 20cm

The diagram shows a body which may be modelled as a uniform lamina.

The body is suspended from the point marked A and rests in equilibrium.

(i) Calculate, to the nearest degree, the angle which the edge AB then makes with the vertical.

[7]

[2]

Frank suggests that the angle between AB and the vertical would be smaller if the lamina were made from lighter material.

- (ii) State, with a brief explanation, whether Frank is correct.
- 5. A uniform rod AB, of mass 0.8 kg and length 10a, is supported at the end A by a light inextensible vertical string and rests in limiting equilibrium on a rough fixed peg at C, where AC = 7a.

(i) Draw a diagram to show all the forces acting on the rod.

(ii) Find the magnitude of the tension in the string. [3]

Given further that AB makes an angle of 20° with the horizontal,

- (iii) find the magnitude of the normal reaction exerted by the peg on the rod at C. [4]
- Two particles A and B, of mass m and km respectively, are moving in the same direction on a smooth horizontal surface. A has speed 4u and B has speed u. The coefficient of restitution between A and B is e. A collides directly with B, and in the collision the direction of A's motion is reversed. Immediately after the impact, B has speed 2u.
 - (i) Show that the speed of A immediately after the impact is u(3e-2). [3]
 - (ii) Deduce the range of possible values of e. [3]

- [6] Athsol
- 7. A ball is projected from ground level with speed 34 ms⁻¹ at an angle α above the horizontal, where $\tan \alpha = \frac{8}{15}$.
 - (i) Find the greatest height reached by the ball above ground level. [5]
 - While it is descending, the ball hits a horizontal ledge 6 metres above ground level.
 - (ii) Find the horizontal distance travelled by the ball before it hits the ledge. [5]
 - (iii) Find the speed of the ball at the instant when it hits the ledge. [3]

MECHANICS 2 (C) TEST PAPER 1: ANSWERS AND MARK SCHEME

- 1. (i) Deceleration = ${}^{5}/_{3}$ ms⁻² Force = $1200 \times {}^{5}/_{3}$ = 2000 N M1 A1 (ii) K.E. lost = $600(30^{2} 20^{2}) = 300\ 000\ J$ M1 A1 4
- 2. P = Fv : 600 = 6F F = 100 N M1 A1 A1 $100 = 96g \sin \alpha + R$ R = 100 - 8g = 21.6 N M1 A1 A1 6
- 3. $L \sin \theta = 0.5g = 4.9$ $L \cos \theta = mv^2/r = 0.5 \times 16 \div 2 = 4$ M1 A1 M1 A1 $\theta = 4.9 \div 4 = 1.225$ $\theta = 50.8^0$ 51⁰ M1 A1 A1 7
- 4. (i) $600(25, 6) + 600(30, 27) = 1200(\bar{x}, \bar{y})$ $\bar{x} = 27.5$, $\bar{y} = 16.5$ M1 A1 M1 A1 A1 tan $\theta = 16.5 \div 27.5 = 0.6$ $\theta = 31^0$ M1 A1 (ii) No : centre of mass depends only on area, not on density B1 B1 9
- 5. (i) Diagram showing weight, tension, normal reaction, friction B2
 - (ii) M(C): $T(7a \cos \alpha) = 0.8g(2a \cos \alpha)$ $T = 2(0.8g) \div 7 = 2.24 \text{ N}$ M1 A1 A1
 - (iii) Resolve perp. to rod : $R + T \cos \alpha = 0.8g \cos \alpha$ M1 A1 $R = 5.6 \cos 20^0 = 5.26 \text{ N}$ M1 A1 9
- 6. (i) $(v_B v_A)/(u 4u) = -e$ $2u v_A = 3eu$ $v_A = u(2 3e)$ M1 A1 $v_A < 0$, so speed = u(3e 2) A1 (ii) Since $v_A < 0$, 2 3e < 0 $\frac{2}{3} < e \le 1$ M1 A1 A1 (iii) $4mu + kmu = mvA + kmv_B$ $v_A + 2ku = 4u + ku$ M1 A1
 - (111) $4mu + kmu = mvA + kmv_B$ $v_A + 2ku = 4u + ku$ M1 A1 $v_A = u(4-k)$, so 4-k=2-3e k=3e+2 M1 A1 $\frac{2}{3} < e \le 1$, so $4 < k \le 5$ M1 A1 12
- 7. (i) $y = (u \sin \alpha)t \frac{1}{2}gt^2 = 16t 4.9t^2$ M1 A1 When y is max., 16 - 9.8t = 0 t = 1.63 y = 13.1 m M1 A1 A1 (ii) When y = 6, $4.9t^2 - 16t + 6 = 0$ B1 $t = (16 + \sqrt{138.4})/9.8 = 2.83$ $x = (u \cos \alpha)t = 30t = 85.0$ m M1 A1 M1 A1 (iii) $m(34^2) = mg(6) + \frac{1}{2}mv^2$ $v^2 = 1038$ v = 32.2 ms⁻¹ M1 A1 A1 13